
International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013 2048
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

An efficient method to avoid deadlock complexity
for mutual exclusion.

Siddaraju K. 1, Dr. Sanjay Pande 2

 1: Research Scholar, and Assistant Professor of Computer Science, .Maharani’s Science College
 for Women, Mysore-570005, Karnataka, India

 2: Research Guide, Principal, SITAR, Belakere, Channapatna-562160, Karnataka, India

Absract_In a distributed system, the multiple processes want to share a common resource. All processes cannot access the resource at a

time. The resource should be accessed by at most one process at a time. For example, in a system with multiple processes, some or all of the

processes may wish to write to a common file. However, no two processes should be allowed to write to that file at the same time in order to ensure the

integrity and consistency of the file. This problem is solved in this paper.

In this paper a distributed algorithm is proposed that realizes mutual exclusion among n nodes in a computer network. There is no common or

global memory shared by the nodes and there is no global controller. The nodes of the network communicate among themselves by exchanging

messages only. Formally while one process executes the shared variable all other processes desiring to do so at the same time should be kept waiting.

When that process has finished executing the shared variable, one of the processes waiting to do so should be allowed to proceed.

In this fashion, each process executing the shared files excludes all others from doing so simultaneously. This is called Mutual Exclusion. In

this mechanism if a node wishes to invoke mutual exclusion then all other nodes are aware of this directly or indirectly that they may themselves not

enter into their critical section. By this mutual exclusion we are ensuring that shared resource is accessed by at most one process at a time. So that

integrity and consistency of the file is ensured.

In this paper we are implementing token based distributed mutual exclusion algorithm with a logical ring topology. Processes form a logical

ring where a token circulates in the ring. A process is allowed to execute in its critical section only if it possesses the token. When the process has

finished its critical section, it passes the token to the successor node in the ring. The logical ring structure is attractive because it is simple, fair, and

deadlock-free. The proposed algorithm is based on queue migration and achieves a message complexity of O(√n) per mutual exclusion

invocation. Under heavy load, the number of required messages approaches 2 per mutual exclusion.

—————————— ——————————

1. INTRODUCTION:

The main purpose of this paper is to provide mutual

exclusion of shared object in a distributed system. In a

system with multiple processes which must share a

common resource, it may be necessary to avoid multiple

simultaneous access to that resource. Mutual exclusion

ensures that the shared resource is accessed by at most one

process at a time. For example, in a system with multiple

processes, some or all of the processes may wish to update

a common file. However, no two processes should be

allowed to write to that file at the same time in order to

ensure the integrity and consistency of the file. The section

of code that allows for such mutual exclusive access of the

shared resource is often referred to as the critical section [1,

2].

In a centrally controlled system, we can implement

the mutual exclusive use of the shared object by

Semaphores and monitors. In a distributed environment,

mutual exclusion is complex due to the absence of a global

or centralized controller, which makes these abstract data

types ineffective. Possibility of data loss during the

simultaneous access of same resource is also high Integrity

and consistencies of files are also not ensured. The solution

to this problem is provided using queue migration

algorithm which achieves a message complexity of O(√n)

per mutual exclusion invocation. In this paper we are

implementing token based distributed mutual exclusion

algorithm with a logical ring topology. Processes form a

logical ring where a token circulates in the ring. A process

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013 2049
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

is allowed to execute in its critical section only if it

possesses the token. When the process has finished its

critical section, it passes the token to the successor node in

the ring. The logical ring structure is attractive because it is

simple, fair, and deadlock-free [5].

2. PROBLEM STATEMENT:
In a distributed system, the multiple processes

want to share a common resource. All processes cannot

access the resource at a time. The resource should be

accessed by at most one process at a time. For example, in a

system with multiple processes, some or all of the processes

may wish to write to a common file. However, no two

processes should be allowed to write to that file at the same

time in order to ensure the integrity and consistency of the

file. This problem is solved in this paper.

3. LITERATURE SURVEY:
BANERJEE AND CHRYSANTHIS [11]: A non symmetric

deadlock-free mutual exclusion algorithm for computer

networks is presented. The algorithm requires O(m)

messages to synchronise m nodes in a lightly load based

system, and the performance approaches a constant k

dependent on m as the workload increases. In a medium to

heavily load system it outperforms other proposed

algorithms and its performance is independent of network

topology. A node k (request collector) is selected at

initialization to which requests are sent from nodes wishing

to enter the critical section. Node k also holds the token.

When a request is received at node k the request queue at k

is copied to the token and is sent to the node indicated at

the front of the queue.

Node k broadcasts a message to all nodes announcing

a new request collector, the node at the rear of the token

queue. The token is passed from node to node in the order

presented in the token queue until the last node is reached.

The token is now appended to the request queue at the

request collector node and the process is repeated. In the

event that a node had requested to node k before it received

the broadcast but after the token was sent, node k transfers

the token to the new request collector. The message

complexity is O(n) under light load and tends to 3 messages

per critical section invocation under heavy load [3,4]. In the

existing distributed system a token based distributed

algorithm is used for mutual exclusion. The request

collector holds the token. When it receives request the

request queue at the request collector is copied to the token

and it is sent to the node which is at the front of the request

queue.

Drawbacks of the existing system:

• The existing system achieved a message complexity of

O(n) using the above algorithm under light load.

• This algorithm requires 3 messages per critical section

invocation under heavy load.

• Nodes are not grouped into a local group because of

which the message complexity is O(n).

PRANAY CHAUDHURY AND THOMAS EDWARD [8]: In this paper

a distributed algorithm is proposed that realises mutual

exclusion among n nodes in a computer network. There is

no common or global memory shared by the nodes and

there is no global controller. The nodes of the network

communicate among themselves by exchanging messages

only. The proposed algorithm is based on queue migration

and achieves a message complexity of O(√n) per

mutual exclusion invocation. Under heavy load, the

number of required messages approaches 2 per mutual

exclusion. The network is assumed to be fully connected.

We partition the n nodes of the network into √n sets of √n

nodes each. Each set is called a local group (LG). Nodes in a

local group can communicate directly with each other for

the purposes of entering the critical section. That is, all

nodes in a local group are fully connected. One node from

each group is selected to form part of the global group

(GG). This node is called a link-node [6]. Each node of the

global group can communicate with all other nodes of the

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013 2050
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

global group and also with all nodes of its local group to

which they belong. In every local group, there exists a

node designated as the local request collector (LRC) known

to all nodes in that group. When a node of a local group

wants to enter the critical section it sends a request message

to the LRC. The LRC enqueues all requests received into its

local request queue. Every node maintains a local request

queue. If the request collector is holding the idle token, the

local request queue is copied to the token queue and the

token together with the token queue are sent to the node

which is at the front of the token queue. A request collector

message is then sent to all nodes in the local group to

indicate that the last node in the token queue is the new

LRC. It must be noted that whenever a request queue or

part thereof is copied to the token queue all nodes copied

are deleted from the request queue [11,12].

A requesting node, upon receiving the token,

deletes its node id from the token queue and enters the

critical section. Upon completion of the critical section

operation it forwards the token to the next node in the

token queue. The process is repeated until the last node of

the token queue, that is, the new LRC, is reached.

Meanwhile, the new LRC may be receiving new request

messages from other nodes, that is, the new LRC is in the

request collecting phase. A node, which previously was an

LRC, may receive a request message sent to it just before

the new LRC information was received by the requesting

node. This request is simply forwarded to the new LRC.

In the global group, there exists a node designated

as the global request collector (GRC) known to all nodes in

the group. Each link-node maintains a variable that holds

the node id of the GRC of the global group. In addition to

the local request queue, a global node also maintains a

global request queue. If a local group does not possess the

token the link-node will be the LRC of its local group.

When a node from such a local group wants to

enter the critical section it sends a request message to the

LRC which then forwards a request message to the GRC.

The GRC, enqueues the request message in a global request

queue, maintained for that purpose, and a marker is

inserted into the local request queue of the GRC. If the

GRC has the token and is idle, the token is sent to the

requesting link-node. Otherwise, it must wait for the token

to arrive [7].

 PETERSON’S ALGORITHM:
 A classic software based solution to the critical

section problem known as Peterson’s solution which is

restricted to two processes that alternate execution between

their critical sections and remainder sections.

 BOUNDED-BUFFER PROBLEM:
 The bounded buffer problem is used to illustrate

the power of synchronization primitives. The mutex

semaphore provides mutual exclusion for accesses to the

buffer pool and is initialised to the value 1.the empty and

full semaphores count the no of empty and full buffers. The

semaphore empty is initialised to value n. the semaphore

full is initialised to value 0.

The solution to this problem is provided by using

semaphores and monitors. Even though an inadequate

solution could result in a deadlock where where both

processes are waiting to be awakened.

 RESOURCE-ALLOCATION GRAPH:

A set of vertices V and a set of edges E in a resource

allocation graph.

• V is partitioned into two types:

• P = {P1, P2, …, Pn}, the set consisting of all the

processes in the system.

• R = {R1, R2, …, Rm}, the multi-set consisting of all

resource types in the system.

• request edge – directed edge P1 → Rj

• assignment edge – directed edge Rj → Pi

If graph contains no cycles ⇒ no deadlock.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013 2051
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

If graph contains a cycle ⇒

• if only one instance per resource type, then

deadlock.

• if several instances per resource type, possibility of

deadlock

RESOURCE ALLOCATION GRAPH WITH RESPECT TO
OUR PAPER:

In the present work, we are providing a solution to

avoid deadlock where the shared files can be accessed by

only one at a time. To avoid deadlock we are using a

distributed algorithm which is token based where there is

only one token present in the network. The system having

the token can access the shared files otherwise it should

wait in the queue to access the shared file until it is released

by the one who is using it. Hence this algorithm provides a

solution which is deadlock-free.

 BANKER’S ALGORITHM
 The Banker's algorithm is a resource allocation and

deadlock avoidance algorithm developed by Edsger

Dijkstra that tests for safety by simulating the allocation of

pre-determined maximum possible amounts of

all resources, and then makes a "safe-state" check to test for

possible deadlock conditions for all other pending

activities, before deciding whether allocation should be

allowed to continue [9].

 The Banker's algorithm is run by the operating

system whenever a process requests resources. The

algorithm avoids deadlock by denying or postponing the

request if it determines that accepting the request could put

the system in an unsafe state (one where deadlock could

occur).

When a new process enters a system, it must

declare the maximum number of instances of each resource

type that may not exceed the total number of resources in

the system. Also, when a process gets all its requested

resources it must return them in a finite amount of time.

For the Banker's algorithm to work, it needs to know three

things:

• How much of each resource each process could

possibly request

• How much of each resource each process is

currently holding

• How much of each resource the system currently

has available

Resources may be allocated to a process only if it satisfies

the following conditions:

• request ≤ max, else set error condition as process

has crossed maximum claim made by it.

• request ≤ available, else process waits until

resources are available.

Basic data structures to be maintained to implement the

Banker's Algorithm:

Let n be the number of processes in the system and m be

the number of resource types. Then we need the following

data structures:

 Available: A vector of length m indicates the

number of available resources of each type. If

Available[j] = k, there are k instances of resource type

Rj available.

 Max: An n×m matrix defines the maximum

demand of each process. If Max[i,j] = k, then Pi may

request at most k instances of resource type Rj.

 Allocation: An n×m matrix defines the number of

resources of each type currently allocated to each

process. If Allocation[i,j] = k, then process Piis

currently allocated k instance of resource type Rj.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013 2052
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

 Need: An n×m matrix indicates the remaining

resource need of each process. If Need[i,j] = k, then

Pimay need k more instances of resource type Rj to

complete task.

SAFETY ALGORITHM:
1. Let Work and Finish be vectors of length m and n,

respectively.

 Initialize: Work = Available; Finish [i] = false for i = 0, 1, …,

n- 1.

2. Find and i such that both:

(a) Finish [i] = false ; (b) Needi ≤ Work; If no such i exists,

go to step 4.

3.Work= Work + Allocationi ; Finish[i] = true

go to step 2.

4.If Finish [i] == true for all i, then the system is in a safe

state.

 The Banker's algorithm avoids deadlock by denying

the request if it determines that accepting the request could

put the system in an unsafe state. In our paper deadlock is

avoided by denying the request when some other is

accessing the shared file. But when the request is denied the

system can wait in the queue so that after the shared file is

released it can be accessed.

PROPOSED SYSTEM:
The proposed system uses a token based queue

migration algorithm and achieves a message complexity of

O(√n) per mutual exclusion invocation and only one token

exists in the network. Permission to enter the critical section

is granted by the only by acceptance of the token, thus

security, Integrity and consistency of files is ensured.

In a distributed system, nodes in the computer

network can communicate only by exchanging messages.

Formally, while one process executes the shared variable,

all other processes desiring to do so at the same time

should be kept waiting. When that process has finished

executing the shared variable, one of the processes waiting

to do so should be allowed to proceed.

In this fashion, each process executing the shared

data (variables) excludes all others from doing so

simultaneously. This is called Mutual Exclusion. In this

mechanism if a node wishes to invoke mutual exclusion

then all other nodes are aware of this directly or indirectly

that they may themselves not enter into their critical

section. By this mutual exclusion we are ensuring that

shared resource is accessed by at most one process at a

time. So that integrity and consistency of the file is

ensured.

In the proposed system n nodes are grouped into

√n sets of √n nodes each. each set is called local group(LG).

The network is assumed to be fully connected. We

partition the n nodes of the network into √n sets of √n

nodes each. Each set is called a local group (LG).

Nodes in a local group can communicate directly

with each other for the purposes of entering the critical

section. That is, all nodes in a local group are fully

connected. One node from each group is selected to form

part of the global group (GG).This node is called a link-

node. Each node of the global group can communicate with

all other nodes of the global group and also with all nodes

of its local group to which they belong [10].

IMPLEMENTATION:

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013 2053
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

This flowchart shows how an IP address of a system connected to a Local Area Network is retrieved. First the hostname

of the system will be retrieved and then the address list will be retrieved using host.addresslist then the addressfamily of it will

be compared with internetwork which is IPV4 format, if it matches then the IP address will be assigned to the localIP variable.

 FIGURE: FLOWCHART 1
FLOWCHART 2:

This flowchart shows how the shared files are accessed. The shared files are displayed in the list box. The contents of

the list box are cleared. If we select the IP address the shared files of that system will be displayed. Then if select one of the

shared files is selected and if we click the “open requested file” button the contents of the files will be displayed.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013 2054
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

FIGURE: FLOWCHART 2
RESULTS :

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013 2055
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

In the snapshot we can see the list of IP addresses

of all the systems connected in the Local Area Network in

the first column. The IP address of the local system is also

present at the bottom left corner as shown in snapshot.

In the snapshot we can see that after selecting the

IP address the list of the shared files present in that system

is displayed.

In the snapshot we can see the shared object of the

IP address 192.168.1.60 is present in second column. When

the shared object is selected and the “open requested file”

button is clicked the file contents is displayed as shown in

the snapshot.

In this snapshot we can see that when the shared

file which is being used by other system is tried to open a

message is displayed asking whether you want to wait in

queue as shown in snapshot.

The snapshot shows that when a shared file being

accessed is released by clicking a “release requested file”

button a message is displayed as shown.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013 2056
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

The snapshot shows that when we want to view

the queue and history we can click on the view log as

shown and select view queue or view history.

In this snapshot we can see the current requested

queue for files which shows who is waiting in queue with

details such as qID, IP address of that system, file name for

which it is waiting, access date of that file, access time of

that file.

The snapshot shows that we can remove the

request from the queue by selecting the file and right click

on it and remove the request.

The snapshot we can see the history of the file

accessing in network which shows the fileID, IP address of

the system, filename, token, access date of the file, access

time of that file and the checkbox which tells whether the

file is open or close.

CONCLUSION:

Operating systems and principles is one of subjects

where we study many things like process scheduling

algorithms, synchronization problems and so on. Among

all these deadlock is a very interesting topic where we

studied various methods to avoid deadlock. But all those

methods were not efficient in solving the deadlock

problem. Our paper also suggests one of the efficient

methods to avoid deadlock and has achieved a message

complexity of O(√n) and under heavy load, the number of

required messages approaches 2 per mutual exclusion. To

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013 2057
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

achieve this objective we have used .NET technology.

Currently in our paper the system can use the shared

resource for a long period there is no time limit, which

leads to starvation. If the checkbox is checked the file is

open otherwise it is closed. We can also search the history

by entering the IP address in the textbox present at the top

left corner or by selecting the date in the calendar present at

top right corner. Also in our paper we have used only text

files for sharing.

REFERENCES:

[1] G. Ricart and A. K. Agrawala, Author’s
response to ‘On mutual exclusion in
computer networks by Carvalho and
Roucairol’, Communications of the ACM
26. 1983, 147 - 148.

[2] J. M. Helary, N. Plouzeau and M. Raynal,
A distributed algorithm for mutual
exclusion in an arbitrary network,
Computer Journal 31, 1988, 289 - 295.

[3] L. Lamport, Time, clocks and the ordering
of events in a distributed system,
Communications of the ACM 21, 1978,
558-565.

[4] M. G. Velazquez, A survey of distributed
mutual exclusion algorithms, Technical
Report CS-93-116, September 1993.

[5] M. Maekawa, A √n algorithm for mutual
exclusion in decentralized systems. ACM
Transactions on Computer Systems 3,
1985, 344 - 349.

[6] O. Carvalho and G. Roucairol, On mutual
exclusion in computer networks,
Communications of the ACM 26, (1983)
147 - 148.

[7] Peerapon Siripongwutikorn, Sujata
Banerjee and David Tipper "Fuzzy-Based
Adaptive Bandwidth Control for Loss
Guarantees,", IEEE Transactions on Neural
Networks, vol. 16, No. 5, September 2005.

[8] Pranay Chaudhuri, Thomas Edward, An
O(√n) Distributed Mutual Exclusion
Algorithm Using Queue Migration,
Journal of Universal Computer Science,
vol. 12, no. 2 (2006), 140-159, submitted:
18/1/05, accepted: 20/10/05, appeared:
28/2/06 c J.UCS

[9] Priya Mahadevan, Sujata Banerjee, Puneet
Sharma, Amip Shah and Partha
Ranganathan,On Network Energy
Efficiency for Data Centers and Enterprise
Networks," IEEE Communications
Magazine, August 2011

[10] Puneet Sharma, Zhichen Xu, Sujata
Banerjee and Sung-Ju Lee "Estimating
Network Proximity and Latency,", ACM
Sigcomm Computer Communications
Review, Volume 36, Number 3, pages 39-
50, July 2006.

[11] S. Banerjee and P. K. Chrysanthis, A new
token passing distributed mutual
Exclusion algorithm, Proceeding of Intl.
Conf. on Distributed Computing Systems
(ICDCS), Hong Kong, 1996, 717 - 724.

[12] Sujoy Basu, Lauro B. Costa, Franscisco
Brasileiro, Sujata Banerjee, Puneet Sharma
and Sung-Ju Lee,"NodeWiz: Fault-
Tolerant Grid Information Service,"
Springer Journal: Peer-to-Peer Networking
and Applications, March 2009.

IJSER

http://www.ijser.org/

	1. Introduction:
	2. Problem statement:
	3. Literature Survey:
	 Peterson’s Algorithm:
	 Bounded-Buffer Problem:
	 Resource-Allocation Graph:
	Resource allocation graph with respect to our paper:
	 Banker’s Algorithm
	Safety Algorithm:
	Proposed system:
	Implementation:
	Flowchart 2:
	FIGURE: flowchart 2
	Results :
	Conclusion:
	References:

